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THE STﬁESS CRITERION OF A TENSION MEMBER WITH
GRADED FLEXURAL STIFFNESS*

(Gontrlbution to the Problem of "clamping Effect" Outside
of the Blastic Range)

By‘Hans W. Kaul
SUMMARY

The approximate size of the stress criterion of a bar
on two supports stressed beyond the elastic range is as-
sessed by an approximation. The calculation proceeds from
the premise of "substitute flexural stiffness" so defined
that the part stressed beyond the elastic range may be
considered as following Hooke'!'s law when determining the
- flexural deformation quantities. For the determination
of the substitute flexural stiffness, it is presumed that
the material is already stressed so much beyond the yield
point as to be strain-hardened. The data are directly ap-
plicable to materials having no definite yield point. For
the rest, von Xarman's method for compressed and subse-
quently deflected bars serves as basis for the calculation.

The action of bars on reaching the yield point is not
discussed; it is to form the subject of a special report,

Ags regards the magnitude of the stress criterion of
tension bars ocutside of the elastic range within the stress
region ~ yield point and ultimate stress, wherein the sub-
stitute flexural stiffness is quite small and finally ap-
proaches zero, the following may be stated: If the whole
bar is stressed beyond the elastic range, the stress cri-
terion itself is very small and approaches zero near the
ultimate load.

*'Die Spannziffer eines Zugstabes mit abgestufter Biege-
steifigkeit. (Bin Beitrag zur Frage der 'Einspann-.
wirkung! im ausserelastischen Bereich.)" Luftfahrt-
forschung, vol. 13, no. 6, June 20, 1936, pp. 181-189,
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If an elastic margin remains near the point of moment
application (nodal point), such as may happen through
thickening of the part when some other welds adjoin, the
stress criterion is consideradbly higher and remains of fi-
nite magnitude even near the ultimate load. The amount of
inecrease depends upon the length of the elastic margin.

Neither the total length of the bar nor the length of
the part stressed beyond the elastic range has any appre-
ciable effect (for example, the heated zones in welds), so
far as it does not pertain to very small lengths which are
of minor practical importance.

The effect of the kind of support at the opposite end
of the bar from the Jjoint itself is considered only when
the length of the part stressed beyond the elastic range is
very small. The final results are:

The elastic margin has infinitely great flexural
stiffness;

The part stressed beyond the elastic range has in-
finitely great length.

I, INTRODUCTION

Supplementing a previous report (reference 1), the
present consideration based on theory only is extended to
the approximate magnitude of the stress criterion for a
bar on two supports stressed beyond the proportionality
limit.

In particular, the case is explored where the bar, ‘un-
der constant axial load throughout its length, is stressed
only over part of it beyond the elastic range.

Such a case occurs in welded structures when material
concentration in the Jjoints results in cross sections
greater than in the free length of the member; and again,
when in the heated zones around a welded Jjoint, the yield
limit and the proportionality limit are locally much re-
duced (reference 2).

The calculation of the stress criterion is reduced to
an equivalent elastic member (i.e., following Hooke's law),
a "substitute bending stiffrness" for a section length
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stressed beyond the yield limit being so defined as to per-
mit its insertion in the solution of the differential egua-
tion for an elastic member of identical length and support
conditions. For the calculation of the substitute bending
stiffness it is, moreover, assumed that the member is al-
ready stressed so much beyond the yield point ag to have
become strain-hardened again. The conditions at the yield
point itself are reserved for a future report.

As regards approximate size in particular, it is at-
tempted to establish how the stress criterion at the end
of a member with two supports changes with the length of

the part -stressed beyond the elastic range and with its lo-
cation in the member.

II., THE STRESS CRITERION OF AN ELASTIC TENSION MEMBER ON

TWO SUPPORTS WITH GRADED BENDING STIFFNESS

AND CONSTANT AXIAL LOAD

As General

From the approximate differential equation for the
elastic line of a bar stressed in tension and bending

M(x) - Sy=-EJ —&
X

y 1is deflection

S, stress in member (assumed constant throughout its
length)

‘M(x), totaX moment of external loads and individual
moments at portion separated at =x, relative to
the section at =x of the assumedly nondeformed
member, it is possible to compute (reference 3)
the stress criterion

m= Xi
Vi
M3y is the individual outside bending moment at point

i
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Vi, torsion of section at point i due to Mi, -  at
any point 1 of the member under any limiting
conditions, : . : :

B.'Stress Criterion of an Elastice Bar-Pin—Jointed at
Both Ends on Two Supports with Two and Three Sections of

Varying Flexural Stiffness

l. Bars with two sections having unlike flexural

supported at two points, O and 2, and stressed under con-
stant axial load § and with a flexural end moment My;

its flexural stiffness along panel O to 1 is constantly
equal to E J;, and along panel 1 to 2, constantly equal
to E J,. : :

With k3 = / §gi and o3 = Ei
i

U
U4 k

cosh® a4 (Ui+Uy)

i

ks
z} tanh a3 and Vi =

and observance of the limiting conditions at the supports
O and 2 and of the stability conditions at point 1, the
stress criterion at support O follows from the approximate
differential equation for the elastic line in panels 0 to
2 at:
0.2 S s Ua (1)
1 -0 -~ V1,2

Table of formulas 1 gives the limiting values ap-
proached by m©+2 when one or more of s,, sz, BJ,, EJj

become zero or infinitely great. With s; =0 or s; =0

the value of the siress criterion of a pin elastic bar on
two supporits with constant flexural stiffness is obtained,
while s, = ®© affords the corresponding limit value of
the bar with constant flexural stiffness for s = o,
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Table of formulas 1. - Several limiting values of

-mP-2 ..corresponding to formula (1) for ext;eme values of
the quantities s;, sz, BJy;, BJg.

Nos sS1 - Sa2 EJ]_ EJg ) mo.2
S
1 0 5 EJ, | EJa =
_—=E .
tanh az
s S
2 s 0 BJ, EJ, ———&: ——————
——————— -1
tanh o1
3 <o Sa EJl EJa ;\/S B Jl
5§ s U,
4 Sy © Edy Edz 1 S
1 -~ —_—
U,
cosh (O, C%E; + l\
5 81| o EJ, 0 5 s Uy
I I
6 S, l ® o J, _ S(sy + ks)
F s1
7 s, Sg o 0 s 8 —
e e PR |
8 si g oo oo 0 oo S s3

stiffness (fig. 2). -~ The following abbreviation is intro-
duced:
Uz
w -
1.3 - U, U,
cosh™ 0 |Uy .+ Uy - =3
_ cosh aa(Ug+U3)

As in -the preceding paragraph, we obtain for point ©O
the stress criterion:
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mO.S —_ (2
I -1 - Wl 3. )

Table of formulas 2 contains the limiting values ap-
proached by m when one or more of s;, sz, Sz, BJ , Edy,

EJ; TDbecome zero or infinitely great. With g =0, g5 =
0, .or s8; = 0, we obtain the stress criterion for an

identically supported and loaded bar with two sections of
different flexural stiffness, and with s; = o» the corre~

gponding limiting valuve of section 1.

The limiting values of tabulations 1 and 2 are sub-
sequently employed in the calculation of the stress crite-
rion of welded steel tube trusses, where the practical im-
portance of individual cases is discussed in detail. For
the present 1t suffices to state that the flexural stiff-
ness of parts of the length (heat zones) stressed beyond
the elastic range is so small compared to the elastically
constant parts that, particularly viecinal to breaking
stress, the elastically constant sections may be ascribed
the term Yinfinite" flexural stiffness, and those stressed
beyond the elastic range, the term "zero' flexural stiff-
ness.

III. ROUGH CALCULATION OF STRESS CRITERION FOR
THEE CASE OF ONE SECTION OF THE BAR BEING STRETCHED

BEYUND TEE YIELD POINT

A. Method of Calculation

Flexural deformations of members in compression be-
yond thc elastic range have been usually described in 1it-
erature by giving "substitute flexural stiffness" EJgyy

a sultable definition so as to permit its direct insertion
in the differential equation of an elastic bar (i.e., fol-
lowing Hooke's law) of the same length and the same sup—
port conditions. So the calculation of a bar stressed
beyond the elastic range reduces to the case of an "equiv-
alent elastic bar." With this procedure the zone at the
yield point was generally disregarded altogether or else
bridged over by interpolation. This range is theoretical-
ly and experimentally treated for bars stressed in combined
tension and bending in a report to be published very soon.
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The present fundamental investigation also disregards
~the range on the yield point op in relation to the ap-

proximate magnitude of the stress criterion; the "substi-
tute flexural stiffness" of the "eguwivalent elastic bar"
is computed for the case of simultaneous occurrence of
very great tension and small flexural stresses under the
assumption that the flexural and moment M, 1is applied

only at a tensile stress op = % > ops at which the mate-

rial of the portion stressed beyond the elastic range has
already become strain-hardened. TFor materials on which no
yield point is discernible, the following considerations
are, of course, summarily applicable.

B. The Substitute Flexural Stiffness
(ve Kdrman's method (reference 4))

Following a suggestion by Engesser, v. Karman deter-
mines the substitute flexural stiffness of a bar com-
pressed and then deflected beyond the elastic range on the
following premises.

l., Under minor flexure of a straight bar the elon-—
gations of the individual fiber correspond
even beyond the elasticity 1limit to the same
stresses produced by these elongations under
pure compression.

2e On defiection flat sections shall remain flat.

On these premises, v. Kdrmdn computes a "resultant
deflection modulus" which, multiplied by the particular
equatorial moment of inertia of the cross-sectional area
relative to its gravity axis, gives the gsubstitute flexur-
al stiffness for a definite main axis plane, and to which
the following relation is applicable:*

Iy J

— Lk -2
Cres = n Ctotal * J celastic (3)

Applying v. Kdrman's definitions for bars compressed
beyond the elastic range to bars stressed in tension be-
yond the yield point, the notations in equation (3) desig-
nate:

*von Kdrmidn denotes the resultant modulus Creg with M,
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“cﬁotal = _JEE___ -is the modulus of the total form éhanges,

d€total
defined by .the slope of the tangent
placed on the stress-strain curve
o = f(etotal) at point (op; €p); Om
is the pure tensile strain S/F on
which the flexural stresses are super-
posed; €n 1is the elongation relative

to o0y in the tension test.

Celostic = 7 -———7— 1s the modulus of the elastic defor-

mations, defined by the slope of that
tangent on the return curve of the hys-
teresis loop in a tensile test with a
stress oy as peak of the loop which
touches the return curve at the peak

(point opm; €m)-

J is the moment of inertia of the bar section with re-
spect to its axis of gravity.

the moment of inertia of the section part lying on the
tension side of the flexural stresses relative to the
"neutral® axis, which is defined as that straight line
lying in the section along which the additional stress-
es from the flexure are zero.

Jy, the corresponding moment of inertia of the section
part lying on the compression side of the flexural
stresses. '

The substitute flexural stiffness (EJgyp) 1is egual

to the product of resultant deformation modulus and iner-
tia moment J

(EJ)sub = Cpreg J = J1 Ctotal *+ J2 Celastic (4)
The position of the neutral axial is defined by:
S; Ctotal = Sz Celastic (5)

wherein §1' and '§2 are the static moments corresponding
to the inertia moments J; and- Jz. -



Table of formulas 2. — Several limiting values of m®-3 corresponding to formula (2)
for extreme values of the quantities s;, sz, sz, BJ;, EJz, EJs.

No. S ]] Sg 83 ‘ EJ]_ EJE EJ3 mO%-.3
i Ss U,
1 0 Sa Sz EJ;\_ EJa EJ3 g v
: - 2" ‘a.s
SsU,
2 S1 0 83 EJ]_ EJg EJ3 1= Uy - Vl.s
SsU
S 0 EJ B EJ 1
? 5 ? ' 2 ? 1-17 .-V,
4 o) Sa Sx BJ, EJg Edg S EJ
Ss U,y
5 Sq o™ Sz ERH EJa Edz 1
1 -
2 Uy s
cosh™ a, <T§ +1>
S s Uy
1 -

s U,

—
cosh® agCI—i— +1> }
3

cosh?® al{s U, + s Uy -~

7 s; | sz | © EJ; | 'O EJs Ss U

S s,
S Ue
s, kK3
cosh? ag (s Up + ks)
S sy
S Ug

8 Sy Sg @ S EJo Ed3
1 -~

s, ¥s Uy -

9 Sy S © @ BJ2 @
1l -

Sy
cosh® Qg

10 81 sg o o 0 ® : S s,

- Ss g
“11 8 Sz S3 ® 0 § = 8,
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A precise determination of the form changes, especial-
ly following bending moments of finite magnitude, requires
several generalizations relative to v. Kdrmdn's calcula-
tion method; in particular, it chould, as shown by W. Rein
(reference 5), include the previous history of the ex-
plored piece. But as these refinements afford only minor
improvements while making the calculation more protracted,
they are disregarded in the present report,

C. Approximate Magnitude of the Substitute Flexural
Stiffness for a Certain Material

In order to get an idea of the approximate size of
the substitute flexural stiffness still to be expected
from bars stressed in tension beyond the yield point, the
Appendix of this paper contains the substitute flexural
stiffness of bars fabricated from a certain carbon steel
and in particular, of circular sections frequently used in
airplane design as welded structures. The Appendix also
containg detailed data regarding the particular material
and its stress-strain curve in prestretched condition dur-
ing drawing and in the annealed state during welding. It
further ig shown that in the annealed zones on welds of
the chosen steel, the breaking strain is reached at ten-
sile stresses at which the blank-drawn material (i.e.,
that considerably. stretched during drawing) still reveals
no. appreciable discrepancy from-Hooke's law, In the in-
vestigation of the deformations of welds from the particu-
lar carbon steel, which included both blank-drawn and an-
nealed pieces, the blank-drawn parts of the bars may still
be assumed elastic when the annealed parts are already
under tension beyond the elastic range.

The deformation moduli established from tension tests
have the following values:

le Blank-drawn tubing -
(Mean value for elastic range approximately up to
ultimate stress of annecaled material):

= = = 6 2
Celastic = Ctotal = B = 1.85 X 10° kg/cm

2, Annealed tubing -
Elastic range (mean value, valid approximately
up to yield point):

Celastic = Ctotal = E = 1.97 X 10° kg/cn®
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TABLE IIl. Ottside of Elastic Range
(aftqf strain-hardening at o = 3,000 kg/cm?2)

-6 -6

o 107" Ctotal 107" Ce1astic
kg/cm2 kg/em? kg/cm?2
3,000 0.0180 ' 1.65
3,350 .0114 1.65
3,670 .0027 1.40

This affords for steel tubes of 20/1 and 30/0.5
diameter/wall thickness ratio the comparative EJsub/EJ

values in the elastic range of table IV. The last column
gives the EJgyp/EJ values for full rectangular sections
in comparison. The effect of the cross-section form is
seen to be relatively small. (v. Kdrmdn and others obtain
the s?me result by comparing full rectangular and I sec-
tion.

TABLE IV
Mean EJsub Deformation moduli
tensile| ~g7 for following cross- (kg/cma)
stress sectional forms
o Ring Complete 10-6 10-6

D/&=20/1 D/5=30/o,§_ rectangle | Coiastic | Ctotal

3,000 0.0289 0.0283 0.0313 0.0180
3,350 .0183 .0178 .0204 }-—1.65 .0114
3,670 .0043 .0043 .0053 .0027

D. The Stress Criterion of a Straight Round Tube on
Two Supports with Varying Length and Location

of the Part Stressed beyond the Yield Point

1. Method of calculation. - The part stressed beyond
the elastic range is.given a substitute flexural stiffness

Edgub-

Proceeding from the bar with two segments of unlike
flexural stiffness, it is attempted to ascertain the change
in stress criterion for different length conditions of the
two segments - once when the segment lying closest to the
joint is stressed within, and then when stressed beyond
the elastic range.
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The premtse is that the bending moment "M 1is applied
only at the pertinent tensile stress oy, so that the pre-
vious history of the piece need not be considered.

2. Bar pin-jointed at both ends on two supports with
two segments of unlike flexural stiffness (fig. 3). = The
test specimen was a round tube D7B = 20/1, 17 cm long.
The results obtained herewith are equally of general im-
portance for other lengths.

Figure 4 gives the stress criterion m®+2 according
to formula (1) for various lengths s, versus the mean
tensile stress op = S/F. Even a small elastic margin s,
at the joint results, as is seen, in a substantial rise in
stress criterion. (Compare the curve for g1 = 1 cm with
that for s; = 0.) On approaching the ultimate load, that
is, in the case oOp = Ofgilure 1i.e., EJ, = Edguyp = 0,

s, = 0 also gives m®+2% = 0, whereas finite values s,
themselves are supplemented by finite values of the stress
criterion m©°+*2, which increase in greater proportion as
length s increases. This is shown in figure 5, where
m®*2 is plotted against s, for various EJs.

This fact 1s egssential for the type of dependence of
clamping factor on the stress criterion, for it was proved
in anotiier report (reference 1) that the clamping factor
Serit ¢ Sg» that is, the ratio of buckling load §_.;4
of a two-bar group consisting of tension and compression

g

member to "natural' buckling load Sy = E:EQ

- S
pression street, increases at first very steeply with in-
creasing stress criterion. m of the tension member from
1.0 for m = 0 and then asymptotically approaches the
limiting values 2.045 for m = © (rigid restraint). The
range of small m with its steep rise in clamping factor
being important from the practical standpoint, a small
elastic margin s: in a bar stressed in tension beyond
the elastic range can raise the clamping factor, i.e., the
buckling load of a group of tars near the point of re-
straint, qguite materially.

of the com-

An example of such a margin s, on a welded joint
is given in figure 6. The presence of welded angles or
stirrups in two mutually perpendicular planes may afford
elastic margins of greater length s,. :
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The segment s; closest to the Jjoint 18 stressed be-
yond the elastic range, while the other segment sz 1is

"ot (fig. 7).

) Figure 8 gives the stress criterion mo¢.2 versus the
mean tensile stress -~ ogp = S/F for various lengths s1 of

the segment stressed beyond the elastic range. On in-

"creasing the length of s; the curves guickly approach

the lower limiting curve for s; = s, sz = 0O (the whole
bar stressed beyond elastic range). In our case the curves
for s; = 3 cm= 1.5D and for s, = s already differ on-

ly 1little, i.e., the hot zones developed in gas fusion
welding are themselves often sufficient to cause the stress
criterion to drop almost to the lowest possible limiting
value (fig. 11).

3. Bars having three segments of different flexural
stiffness. - The examples here apply to cases where the
segment of length s, closest to the Joint is stressed
elastically, the next one s, stressed beyond the elastic
range (heated zone), and the one next to the other support
(sz), is again stressed elastically (fig. 9).

In figure 10 the stress criterion mf«3 is plotted
against the mean tensile stress op = S/F for s; = con-
stant = 1 cm, s = constant = 17 cm, D/§ = 20/1 and aif-
ferent values of s,. The case is like that treated last
in the preceding section; even figure 10 is fundamentally
like figure 8 - that is, by existence of an elastic margin
of given length s, at the joint, a length increase of
the next following segment stressed beyond elastic range by
a certain amount (here sg 2 1,5 D) has practically no ef-

fect on the stress criterion. This is particularly evi-
dent in figure 11, where the stress criterion m@+3 1is
shown against length s; for different values dp.

Flotting the stress criterion for constant wvalues
sz = constant and s = constant against oL with s, as

rarameter, results in a set of curves which fundamentally
is similar %o that in figure 4; that is, even in a bar
conformable to figure 9, an elastic margin affects the
stress criterion at the joint approximately as its length.

4, Effect of type of support at the end of the bar
opposite to the joint of applied mément. - This effect is
given only a cursory treatment in the preceding example of




14 ¥.A.C:A. Technical ‘Mémorandum No. 804

a bar with three sections of constant flexural stiffness.
In the extreme case EJ; = EJg = o, EJy = 0 which, as

regards approximate size, corresponds to the case where
sections s; and s; are stressed elastically, and sec-

tion s, 1is stressed beyond the elastic range, we have in
the case of hinged end support on both sides:

m= —————-—= (table of formulas 2)

If section s, is‘rigidly restrained in end poinf 3,
it is in the present case equivalent to a shortening of
the bar by an amount s, (table of formulas 2, fig. 11,

and table of formulas 1, fig. 7), so that:

S (s, + sz) s,
m = —_
Sa

Table V gives for a load S = 2,000 kg, an elastic
margin at the point of moment application s, = 1 cm and

different bar lengths s the values m®*® for hinged and

clamped support of bar end 3., 1In both cases the values
approach each other guickly as sz 1increases.

TABLE V. S = 2000 kg, s; = 1 cm, EJ;, = EJz = o, BEJy = 0

Rigid restraint at end 3 h1nged support at end point 3
s = 17 cm and s = 47 cm s = 1l7|lem s = 47 ecml s = o
or § = @ ‘

4,000
3,000
2,660
2,500 ¢ 2,125 2,040 2,000
2,400
2,340
2,250

0
n

Nk QO3

/

This table further reveals the effect of total bar
length s on the size of m to be small and even zero in
special, extreme cases; conseguently, the data obtained
previously with a bar of 17 cm total length is of general
validity for any length.
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5. Simple approximate calculation of the stress cri-
terion of bars stresged in tension beyond the elasgtic
range. - This affords the possibility for a very simple
approximate calculation of the stress criterion of bars
stressed beyond the elastic range, which have an elastic
margin at the point of applied moment (such as the joint
on a framework). The m values are generally sufficient-
ly exact when the calculation bases on a bar hinged at
both ends and having two sections of different flexural
stiffness ~ the elastic part having length s; and flex-
ural stiffness EJ; = o; the other, length s; = o and
flexural stiffness BJp = (EJ)gup- Then the stress crite-

rion is (table of formulas 1, No. 6)

m0.2: 5 (51 + kg)

Figures 12a to 124 give the stress criterion m©°-2
of the elastic margin versus the substitute flexural stiff-
ness of the bar section stressed beyond the elastic range
for divers lengths s, . The tension S forms the parame-

ter., Thus it is possible to obtain the stress criterion
direct or else by interpolation for a given group of val-
ues s,, 5 and EJz = Edgubp-
IV. APPENDIX
CALCULATION OF THE SUBSTITUTE FLEXURAL STIFFNESS OF
ROUND TUBES WITH NUIEBRICAL EXAMPLES FOR TUBES
OF CERTAIN CARBON STEEL
A, Calculation of the Substitute Flexural Stiffness
for the Circular Section
Here it 1is necessary to distinguish between the two
cases that the neutral axis intersects the median line of
the ring perpendicular to it:
1) between the center of the ring and the inner wall
of the tube, that is (R - a) > § (see fig. 13),

or

2) within the tube walls, so that (R - a) £ §. (See
fig., 14.)
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In the first case (EJ)gyp -is readily approximated
(see reference 2), while the second case requires an exact
calculation. :

To 1) (ﬁ - a) > 8 (fig. 13)

In this case the assumption of a part of the cross-—
sectional area equal to the product of the length of the
relative arc of the wall center line and the wall thick-

ness affords a close approximation. Resorting to Recht-
lich's notation rp = B~§—£ and n = fL, the calculation
of the comparative factors %j and %;m gives:

S, _ J 1 ~-1n2 +n (m - arc cos n)

= Vf;f:_gg -~ n arc cos n

Jy (m - arec cos n) (1 + 2n%) + Bn,/z_~ n?

Ja arc cos n (1 - 2n8%) - Sn«/I":'EE

These two ratios are thus shown to become iﬁdependent
of the wall thickness & and to be solely dependent wupon
n. Yow the substitute flexural stiffness EJsub for a

certain mean tensile stress o, can be determined as fol-

c : S
lows: form the ratio “elastic - =1 for the particular
Ctotal =
ops read from Rechtlich's curve S1 = f(n) the corre-
S -
e} J
sponding value n = 51, which applied to the curve jﬂ =
. J m 2
F(n) then gives -1 . ©Now all needed data for a given
2

tube (rp, P, i, J) are known and (EJ)gyp can be obtained
because equation (3) may be transformed by means of the re-
lation:

J, +J, =J+7F a

to
2 2
Cres = —_5;7 —————— Ctotal f ;E;~—__— Celastic
(:—+ 1> (2 + 1)
Yo \Ja /
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and which gives
(B gup'= Cres 9 -

To 2) (R - a)< s (fig. 14).

First determine from

g

total §2 Celastic

the'position of the neutral axis by defining a and Do
(fig. 14).

For @, the equation which is solvable with the aid
of figure 15, reads as follows:

2
- (3]
sin® %% tan Po _ &m i R, d
2 2 /Celastic _ 1>
Ctotal

which then gives

c=R<1-—cos—9—>and a=2R~-—c¢c

Now when computing (EJ)Sub, it is expedient to in-

troduce an "ideal cross scction" so that the calculation
can be made with a straigzht stress distribution (constant
deformation modulus Cgygqtie/)  The width 2f of each

fiber (fig. 14) is shortened in the ratio ctotal _ 1eny-
: Celastic

ing thus a cross section with a "substitute inertia moment"

Jgup Trelative to the neutral axis for which:

Ctotal N [R* 1
e < (- 2y [BY (o -} oin s
_ /

Celastic

and finally

(EJ)sub = Celastic Yeud
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B, Numerical Examples of the Substitute Flexural
Stiffness for a Certain Steel

Preparatory to the tension-bending tests beyond the
elastic range, the deformation moduli Ciy4,7 and Celastic

of the test material had been established by the Materials
Branch of the DVIL.

" The material consisted of commercial blank-drawn
Bohler steel tubing, having a breaking strength of from 40
to 50 kg/mm? in the blank-drawn state. The stress-strain
curves had been determined on both plain and annealed spec—
imens. The results of the annealed samples reveal the be-
havior of the metal in the heated zones of welds.

Figure 16 illustrates the total elongation €total

versus the tension ¢ for two blank-drawn sample tubes.
The yield point and breaking limit of the annealed sam-
ples, which are shown also, disclose the blank-drawn tube
to still approximately follow Hooke's law at a load corre-~
sponding to the breaking stress in the annealed tubes,

Thus the investigation of the deformations on welds of the
particular metal including both plain and annealed speci-
mens may be made on the premise that the blank-drawn (plain)
parts of the bars are stressed within the elastic range.
The deformation moduli gquoted in a preceding section were
obtained from the test data. As will be seen in table III,
the modulus of the total form change Citotal 1m the range

beyond the elastic limit is less than 1/100 of modulus E
within the elastic limit after straip—hardening. The mod~
ulus of the elastic form change Celastic is, above the

yield point, still a little less than modulus 'E (reference
1), although it remains of the approximate size of BE.
The values for Celastic correspond to the slope of the

tangents at the peak of the hysteresis loop (compare the
-~ tangents in fig. 17); that is, they are maximum val-
ues with very littlie stress decrease. At great values of

stress decrease Celastic decreases along the return

curve of the hysteresis loop as much as ~ 25 percent (for
stress decrease to zero).

Numerical values of the substitute flexural stiff-
ness (EJTsub). — The calculation of EJsub for circular

sections is made as stated in the previous section. Table
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B
IV gives the values ~_sub for D/S = 20/1 and D/& =

30/0.5 for three different mean tensile stresses Op.
Incident to the examples for round tubes in tabdle IV, it
is to be noted that the distance R - a of the neutral
fiber from the compressive edge fiber (fig. 14) will be
less than the wall thickness for the particular form-
change moduli. ‘

Translation by J. Vanier,
National Advisory Committee
for Aeronautics.
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Figure 1.- Bar on two hinged supports with two parts
having unlike flexural stiffness.
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fMigure 3.~ Bar on two hinged supports with two parts
having different flexural stiffness, one
part being stressed beyond the elastic rango.
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EJ2=EJy (oerfectly elastic bar)
Op= 3720 kg/cm o= 3000 kg/cm
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Figure 5.- m versus lepgth s,of ¢lastic margin for
different substitute flexural stiffness EJz

Figure 6.-~ Formation of an elastic margin s,in welded JOlnts
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figure 7.- Bar on twohinged suoports with two sections of different
flexural stiffness, the part near the joint belng stressed beyond the
elastic range.
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different flexural stiffness,the center section
being stressed beyond the elastic range.
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Figure 13.- Location of neutral axis in section for tension beyond
elastic range superposed by bending (R-a>68.)
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Compression side

Figure 14.- Location of neutral axis in section for tension beyond
elastic range superposed by bending. (R-a <§.)
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Figure 16.- Tension o versus total elongation ¢ total for two
smooth drawn sample tubes.
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Figure 17.- Return curves of hysteresis loop for annealed tubes
near breaking strain.
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